
AD-A0B9 461 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG -ETC FIG 9/2
GENERIC DATA TRANSACTION SYSTEM. VERSION 2. SYSTEM DESIGN.(U)
MAR T9 J E EVANS- L H MASON, R C WILLIGES N00123-78-C-1401

UNCLASSIFIED VPI-HL-792/NPRDC-79-1 NL

El BlI////ll/Il'
i//ffllflfl//IiiIffllf
EllEgllgglgEEE
mulllllullllll
-hllllllllllll
-EIIIIIIIIIIumum/ 080

'J.

0

CZ1,

GENERIC DATA TRANSACTION SYSTEM:

VERSION 2 SYSTEM DESIGN

by

John E. Evans, III

L- Hardy Mason

HFL-79-2/NPRDC-79- 1

March 19793

jPrepared Under Contract to

Navy Personnel Research and Development Center

San Diego, California 92152

IContract No. N00123-78-C-1401
1Principal Investigator
jRobert C. Williges

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted forI any purpose of the United States Government.

I
I

4

SECURITY CLASSIFICATION OF THIS PAGE (Won Date Entered)

ROIREAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE : BEFORE COMPLETING FORM

1. REPORT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

14. TITLE (and Subtitle) S. COVERE

DAIC TA TRANSACTION SYSTEM.' 15 TeJnu l Re 5 tdr 17
RSI SYS EM DESIGN, _ Ju178 - 15 Julr 979

~;u~o~ra~ '~T~x HFL-79-2/NPRDC-79- BRa

7. AUTHOR(&) -- ,, -.-.;.--,,- -,- .. -,. 8 •R

Evans, /j I~7i~ N~O2-8~'
L. Hardy ,so IKIL _ U)7, _ .C _ lz5 _ 4/, 7.

9. PERFORMING ORGANIZATION NAME AND ADDRESS " -- "JL
".

,
Human Factors Laboratory / 62t N' WIORK uN .T UMBRS
Dept. of Industrial Engineering & Operations Res. Technology
Virginia Polytechnic Institute & State University ZF57-525-001-022 (F: Manned

Blacksburg, VA 24061 gtsDein
11. CONTROLLING OFFICE NAME AND ADDRESS -42. AP 'TDADesign of Manned Systems Program Mari]a7
Navy Personnel Research & Development Center 1 Mr 7PAGES

San Diego, California 92152 74
14.3 MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) IS. SECURITY CLASS. (of this report)

F$75 $I7. Unclassified

15a DECLASSIFICATION:DD)WNGRADING

* vi7..crSCHEDULE
16. DISTRIBUTION STATEMENT (of! - .-1,W1 --

Approved for public release; distribution unlimited

S17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide iI necessay and Identify by block number)

plasma panel application, minicomputer applications, information base software,
transaction system, table driven software, touch panel applications, event

based emulator, embedded operator performance measurement, computer aided

behavior research

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)
_-- t-This report and its companion (HFL-79-3/NPRDC-79-2)supeced-eHEL-.8-2
NPRDC&, documenting an enhanced versi -o1 the same system. The program

dscribed is a machine dependent, table driven, general software system written
for the advanced programmer to communicate the internal operations of the soft-
ware. Included are a description of data structures, program logic, and user
interfaces. The Fortran IV software processes randomly accessed data which are
tree structured by file, record, page, and field, and includes a functionally
complete primitive command language, a display format processor, and provision
for user supplied software appendages.

DD ... 1473 EDITION OF I NOV65 IS OBSOLETE Unclassified 4/6
e0/ z.Zj'~~ SECURIT CLASSIFICATION OF THIS PAGE (R*len Data tntlered:

IThis report and its companion (HFL-79-3/IPRDC!-79a-2)- supercede

KFL-78-2/IPEDC-78-2, a previous report by the same authors.

(Evans, J.E., III and Has on, L.H. Generic data transaction

Isystem: system design. Blacksburg, Virginia: Virginia

Polytechnic Institute and State University, UFL-78-2/IPRDC-78-20

July, 1978.)

Accesion For
NT16 GZ-a&I
DDC TAB

Unamou.iOd

Dst spccial

I Lii

I ACKNOWLEDGMENT

I
This report describes work performed at Virginia Polytechnic

Institute and State University under contracts N00123-77-C-1081

I and N00123-78-C-1401 with the Navy Personnel Research and

Development Center. Dr. Frederick Buckler served as the

scientific monitor. The opinions expressed in this report are

those of the authors, and do not necessarily represent the views

of the Navy Personnel Research and Development Center or the U.S.

Navy.

I
I

I
1I

I
IIi

I SUMMARY

I
Problem

A software system is required which will allow the experimental

3 investigation of embedded operator performance evaluation

techniques in data transaction systems. To permit meaningful

research, the system must provide the experimenter a wide latitude

in the design and generation of a data transaction task.

3 Approach

A generic data transaction system was appraised to be a

suitable vehicle for attaining the above stated goals. Such a

system would consist of a functionally complete set of primitive

operators which could be used to process a random access dataset.

' J Through the use of a hierarchically organized description, a

programmer would communicate to the generic system the definition

of a specific application, i.e., record and display formats. The

additional provision for user supplied software appendages at

strategic points in the generic system imparts syntactic and

Isemantic extensibility to the native minimal query language.
1
1
I
I
[V IIII NHN

I |Results
k generic data transaction system was implemented in FORTRAN IV

and Assembly language on a minicomputer with 28K words of memory,

j ia cartridge disk subsystem, a programmable real time clock, and a

plasma panel terminal (including 512 by 512 pixel ac plasma panel,

1 32 by 32 resolution touch sensitive panel,- and ASCII or PLATO

keyset). The flexibility and extensibility bf the generic system

were found to be acceptable for the implementation of experimental

I (research and non-research) applications.

IConclusion
A table driven generic data transaction system consisting of a

functionally complete set of primitive operators and an extensible

minimal query language is a desirable vehicle for allowing

experimental investigation into many aspects of the design and

utilization of data transaction systems. Additionally, due to the

relative ease with which an application may be created or

modified, the generic system has merit in a non-research

environment as well.

Recommendation

The generic system approach which was applied to event-based1-
systems in this investigation should also be applied to time-based

systems with the expectation of similar encouraging results.

I

1

[vi

I .

i DISCLAIMER

I
The software system described in this document is the product

of the authors alone and does not incorporate any suggestions from

I any other individuals or uncited sources. The authors make no

guarantee of the accuracy of any part of this document or the

software system and assume no responsibility or liability for any

J consequences of its usage under any conditions. Duplication of

the documentation or software whether in part or in full by

J whatever means and for whatever purpose is permitted only with the

inclusion of proper reference to authorship.

4

9

I.

vi

t I

I

ITABLE OF CONTENTS

!
I. Introduction I

II. Control Cycle.. 3

m III. Primitive Commands 6

1 1.0 System- and File-Oriented Commands . - . . 6

2.0 Record-Oriented Commands 6

3.0 Page-Oriented Commands 8

4.0 Field-Oriented Commands. 8j
5.0 Special Key Funcions 9

IV. File Structure 10

1.0 Introduction 10

2.0 Data File. 10

2.1 Control Record 10

2.2 Data Records 11

3.0 Status File. 12

V. Data Organization. 13

1.0 Introduction 13

2.0 MEMORY 14

3.0 User Data 16

J 3.1 CSTATE 16

3.2 ACCBLK 17

I
, [viii

A__

4.0 File Definition(s) 19

4.1 FLDSCR 19

4.2 RNDSCR 21

4.3 RNTABL 21

4.4 RNIMAG 22

4.5 RTTABL 22

4.6 Record Definition(s)22

6.1 RDESCR 23

J 6.2 SMDSCR 23

6.3 SMTABL 24

6.4 SIMAGE 24

6.5 DDESCR 25

6.6 DTABLE 25

6.7 FORMAT 26

6.8 PGDSCR 26

6.9 PGTABL 27

6.10 PGIMAG 27

6.11 Page Definition(s) 27

11.1 PDESCR 28

11.2 TDESCR 29

11.3 TTABLE 29

11.4 FDESCP 30

11.5 FTABLE 30

11.6 SDESC 31

11.7 SSTABL 31

11.8 SSTRNG 32

ix

" 5.0 Data Record 1/0 rea(s).

5.*1 RECORD . . . -. o. . . . 33

5.2 DATA ?4

6.0 Status Record I/0 Area(s). . . . 35

6.1 STATUS 35

6.2 STATEL 35

7.0 Buffer Control o . . . 37

7.1 BIFCTL . o . * 37

1 7.2 BUFTBL. 37

VI. Common Blocks. 39

VII. Procedure Descriptions 41

VIII. File Creation/Maintenance Utility. . 63I
IX. Application Specific Procedures. 65

Appendix A: State Tables 70

Table 1: State Table for BSCAN71

Table 2: State Table for BOOLN 73

Ix

I
1

'I
% i K

I I. INTRODUCTION

I
In order to allow the experimental investigation of embedded

operator performance evaluation techniques in data transaction

systems, a generic data transaction system was developed with

which many different transaction systems could he implemented and

studied. The subject interface to the generic system consists

essentially of a 512 by 512 pixel ac plasma panel output device on

which formatted alphanumeric and graphical information may be

displayed, and a (ASCII or PLATO) keyboard and 32 by 32 resolution

touch sensitive panel through which the subject may interact with

Ithe system.
I

To provide the flexibility necessary for the imp]paentation by

I the experimenter of both novel and conventional but dissimilar

data transaction systems, it was necessary that a table driven

scheme be used in the design of the generic system. Through the

use of the available tables (or descriptors) explained in this

document, the experimenter is allowed a wide latitude in the

design and generation of a data transaction task for use in his

research. Also, the generic system provides a functionally

I complete set of primitive operations from which complex query

languages may be constructed by the experimenter. Alternatively,

if the experimenter desires, the primitive command language can be

used directly as provided. The information base for the generic

system consists of nonhomogeneous hierarchically organized (file,

I

2

Irecord, page, field) binary coded data stored on direct access

online mass storage.

3 The entire generic system was implemented on a PDP 11/55 mini-

computer with 28K words of core memory, an RK05 disk drive with

RKI1 controller, a KW11-P real time clock, all manufactured by

Digital Equipment Corp., and a GCC-1B plasma panel terminal

manufactured by Information Technology Ltd.

I
This technical report is the first of three documents

f describing the Generic Data Transaction System. The second,

(HFL-79-3/NPRDC-79-2), contains a complete set of source listings

for the system. The third, (HFL-79-4/NPPDC-79-3), contains a

j user's guide and sample application-specific user routines.

1
!
!
l
I

3

II. CONTROL CYCLE

The execution of the generic data transaction system consists

of an initialization phase during which files are opened, control

variables are initialized, and completion routines are specified,

followed by the execution phase which consists of a single loop

within which either a command is interpreted and executed or a

field update is applied. Asynchronously, the touch panel may be

used in the specification of a field for updating. The optional

user timing of character writing delays as a synchronous extension

of the plasma panel interrupt handler occurs asynchronous to the

rest of the execution phase and program termination occurs

synchronously in response to a <CTRL-C> equivalent on the

keyboard. The following outline summarizes the (optional)

operations.

I. Initialization

A. Open files

B. Control variable assignments

C. Specify completion routines

(D. User supplied initialization)

II. Execution

A. User-performance recording

B. Input prompting (user supplied prompting)

Vt

4

C. Command input; also, translate end-of-file to

<CTRL-Z> command, and error to <CTRL-C> command

D. User-performance recording

E. Update mode:

1. Preliminary verification or update request

cancellation

2. (User supplied conversion (and field updating))

and/or conversion and field updating

3. Error reporting (user supplied messages) and

user-performance recording

F. or command mode:

1. (User supplied command interpretation (and

execution)) and/or command interpretation, and

user-performance recording

2. Command execution - select from:

a. LOGON (user supplied messages)

i. Control record processing

ii. Device activation

(iii. User supplied extensions)

b. LOGOFF

i. Final record processing

ii. Control record processing

iii. Device deactivation

(iv. User supplied extensions)

C. SELECT (user supplied comparisons and/or

messages)

d. RELEASE (user supplied messages)

F5
- e. ADD/INSERT

f. DELETE

g. Record accessing (user supplied messages)

h. Page accessing (user supplied timing)

i. Field accessing and switch to update mode

J. Update cancellation

3. Error reporting (user supplied messages) and

user-performance recording

I
III. Touch panel (asynchronous)

I A. Coordinate translation (user supplied preprocessing)

B. Field selection

C. Field accessing (user supplied timing) and switch

I to update mode

,! (IV. Character writing (user supplied timing) (asynchronous))

I V. Termination

A. Drain 1/0 queues

B. Device termination

(C. User supplied termination)

*1
I
I

Ii

6

IIII. PRIMITIVE COMMANDS

I
1.0 System- and File-Oriented Commands

I LO - LOgon, LOgoff

I
2.0 Record-Oriented Commands

A,AD <name> - Add - add a record of the named type to the

file. The record is added immediately

Iafter the current record, or in place of

i the record just deleted (if any), or at

the end of the file if no record has yet

Ibeen accessed.

1,IN <name> - Insert - insert a record of the named type into

i the file. The record is inserted

I immediately before the current record,

or in place of the record just deleted

I (if any), or at the beginning of the

file if no record has yet been accessed.

SEX - EXclude - exclude the curLent record from the

working subset.

D,DE - Delete - delete the current record from the file.

R,RE,RL - Release - expand the working subset to include all

allocated records.

I!I

7

ISSE <ep>
I -Select -selects a working subset of the file

based on (Boolean combinations of)

relational or logical values of field(s).

(bexpr> :=<bvalue> I (<bexpr>) I

I <uop><bexpr> I <bexpr><bop><bexpr>

I <bvalue> := ((name>(rop><value>) I<name>

<uop> :=NOT I -,

J <bop> I: & AND IORI

<rop> =I EQ I > I GT I LT I< I NE I LE I GE

J <value> <: string> I '<string>'

- CE - Current Record -access the current record in the working

subset. (An effective NOP.)

- NR - Next Record -access the next record in the working

subset.

F,FO <number>

Forward - access the nth subsequent record in the

working subset.

PR -Previous Record -access the previous record in the working

sub set.

BBA <number> -Back -access the nth previous record in the

working subset.

* FR - First Record -access the first record in the working

- subset.

LH - Last Record -access the last record in the working

subset.

1 3.0 Page-Oriented Commands

CP - Current Page - (re)display the current page.

NP - Next Page - display the next page in the current

record.

1 PP - Previous Page - display the previous page in the current

record.

FP - First Page - display the first page in the current

J record.

LP - Last Page - display the last page in the current

I. record.

P,PA <name> - Page - display the page in the current record

with the given name.

P,PA <number> - Page - display the nth page in the current

record.

4.0 Field-Oriented Commands

CF- Current Field - access the current field in the current

page.

XF- Next Field - access the next field in the current page.

P? - Previous Field - access the previous field in the current

i page.

FF - First Field - access the first field in the current

page.

LF - Last Field - access the last field in the current page.

I

I 9

<name> - access the named field in the current

I page.

<number> - access the nth field in the current page.

<touch> - access the field touched (if touch

sensitive).I

I 5.0 Special Key Functionsi
<CTRL-C> - terminate execution.

<CTRL-U> - throw away the current input line.

<CTRL-Z> - when modifying a field, leave the field

Iunchanged; otherwise, leave the current
record unchanged.

<rubout> - delete the last character in the current

Jline.

I

]
I
I
I

10

I IV. FILE STRUCTURE

1.0 Introduction

I A logical file in the generic system consists of a physical

data file and a physical status file The two files are managed

as a single entity by the generic system.

I

2.0 Data File

IThe data file is a random access file in which the data

jassociated with a logical file is maintained by the generic

system. All records in the file are the same size, each record

being a multiple of 256 words. The file consists of a control

record followed by the data records. The data records consist of

Itwo subsets of contiguous records (either, but not both, of which

may be empty); the first subset are records which are in use

(allocated or deleted); the second subset are records which have

Inever been used.

1 2.1 Control Record

IThe first physical record of a data file is reserved for the

maintenance of the file by the generic system. The format of theI

.1. 11

S I record is as follows:

' Word 1 holds the number of records in the file.

Word 2 holds the physical record number of the first unused record

S I in the file.

Word 3 holds the record size plus one of the records in the file.I
Word 4 holds the physical record number of the first record on the

I allocated list.

I Word 5 holds the physical record number of the first record on the

j deleted list.

j IWord 6 holds the physical record number of the last record on the

allocated list.

Word 7 holds the number of allocated records in the file.

The remaining words are unused and have undefined values.

I
I 2.2 Data Records

I The first two words of each data record are reserved for future

changes to the system. The third word of each data record'In__

12

contains the (coded) record type of the record. The remaining

words contain the actual data associated with the record. Any

excess words in the record, which must be a multiple of 256 words

3 in length, are unused and have undefined values. All contents of

a data record are undefined if the record is deleted or unused.I

1 3.0 Status File

!
The status file is organized as a random-access file of 256

1 word records. Each record's format is identical to that of the

* STATUS area, (described in section V.6), with the exception that

the contents of the final word are unpredictable. The allocated

data records are externally chained on a doubly-linked list

maintained in the STATEL status elements in the status file. The

deleted data records are externally chained on a singly-linked

list of STATEL status elements. The included/excluded status of

each allocated record in up to 15 working sets is recorded in the

status file with both deleted and unused records marked as if they

were deleted. Excess STATEL status elements in the final record

of the status file are initialized as if for deleted records.

There is no STATEL status element for the control record of the

data file, so the physical position in the status file of a STATELr status element associates it with the corresponding logical -

rather than physical - record in the data file.

p -

.9

I V,, DATA ORGANIZATION

I
1.0 Introduction

I The structure of this description of the data organization is

the same as the structure of the data organization itself. Thus

by reading through linearly, one can see the organization as a

whole; or one can use the index to go directly to any block in

question. One point to note is that all definitions of files,

Irecords, avd pages are kept in memory, and that only the data in a

given record is swapped in and out. The system is entirely table-

driven, and unless otherwise noted all variables are two-bytes in

size (integer), and all indices are in units of two-bytes.

I]

I

vi

2.0 MEMORY

I
MEMORY is at the same time the name of the universal atray in

which all system tables and data are kept, and the name of the

block of nine words that appear at the beginning of that array.

I The uses of those particular nine words are as follows:

MEMORY(1) holds the index in MEMORY of the BUFCTL area. It must

be initialized to that value.

MEMORY(2) holds the index in MEMORY of the CSTATE area. Again,

this value must be initialized

IMEMORY(3) holds the length of MEMORY (as the universal array). It

is needed only by a debugging routine that dumps MEMORY, and if

that routine (DEFDMP) is to be used, MEMORY(3) must be initialized

to that length. Normally, however, this location may be ignored.

MEMORY(4) holds the font width. It must be given that value

initially.

MEMORY(5) is currently unused, but is reserved for access to

multiple files.

I
MEMORY(6) is currently unused, but is reserved for access to

1multiple files.

1
I

15

I MEHORY(7) is currently unused, but is reserved for access to

I multiple files.

MEMORY(8) is currently unused, but is reserved for allocation of

logical I/O units in support of multiple files.

MEMORY(9) is currently unused, but is reserved for management of

multiple users.

I
I
I

I
I
I
I
I
I
I
I
l

16

3.0 User Data

1 3.1 CSTATE

I
The system maintains, (and under a multi-user version would

I maintain for each user), a block called CSTATB, which describes

the current user state. The multiple user access arrangement is

not yet defined. The use of each of the ten words in CSTATE are

as follows:

1 CSTATE(1) holds the physical record number of the first record on

the included list. It is zero if there are no included records.

CSTATE(2) holds the physical record number of the last record on

the included list. It is zero if there are no included records.I
CSTATE(3) holds the index in CSTATE of the user's ACCBL, and

I should be initialized to that value.

CSTATE(4) holds the index in MEMOI Y of the user's RECORD area, and

j should be initialized to that value.

ICSTATE(5) holds the index in MEMORY of FLDSCR. Under a multi-file

1 version, it would be initialized to zero, and given the index

value when a file was first accessed. Currently, it should be

1 given the index value initially.

I

17

CSTATE(6) holds the index in FLDSCR of RDESCF. it is given the

* index value when a record is accessed, and is zero when na record

is currently accessed. Under a multi-file version, it would be

zeroed by the system each time a new file was accessed.

i CSTATE(7) holds the index in RDESCR of PDESCR. It is zeroed each

time a record is accessed, and giveti the index value each time a

page is accessed.

CSTATE(8) holds the current field number. It is zeroed each time

a page is accessed, and assigned the field number each time a

field is accessed.

J CSTATE(9) holds the index in MEMORY of the next CSTATE area or

zero if this is the last CSTATE area.i
CSTATE(10) holds the working set number currently in use. It must

be initialized to zero.

3.2 ACCBLK

IThe generic data transaction system maintains within this block
accumulated and current measurements of the interaction of the

operator with the system. The specific words are used as follows:

!
ACCBLK(1) holds the stroke count for the most recently typed

I
I

18

Ientry.

ACCBLK(2) holds the rubout count for the most recently typed

3 entry.

i ACCBLK(3) holds the line cancel count for the most recently typed

i entry.

j ACCBLK(4) holds the response time of the user to the most recent

prompt (in 60 hertz ticks).I
ACCBLK(5) holds the typing time of the most recent entry (in 60

hertz ticks).

ACCBLK(6) holds the elapsed time of the processing of the most

recent directive (in (0 hertz ticks).

ACCBLK(7) holds the number of commands processed by the system.

ACCBLK(8) holds the number of errors processed by the system.

1

. !.

1- -19

1 4.0 File Definition(s)

In the current implementation, there is but one (logical) file,

which must be accessed by the user (with the procedure UINITL).

However the data organization allows any number of files to be

I defined, each definition being a block as described in this

section, multiple definitions being arranged sequentially- in

MEMORY. The multiple file access arrangement is not yet defined.

4.1 FLDSCP

The file descriptor, FLDSCR, is a block of twelve words which

are used as follows:

FLDSCR(1) holds the index in FLDSCR of RNDSCR. It must be

initialized to that value.

FLDSCR(2) holds the index in FLDSCR of RTTABL. Again, this value

must be initialized.

FLDSCR(3) holds the maximum number of records in the file,

I including the control record, deleted records, and unused records.

The value is extracted from the file control record when the file

is opened.

t
FLDSCR(4) holds the physical record number of the first unused

I

20

I record in the file. The value is extracted from the file control

record when the file is opened. If there are no unused records,

this location equals FLDSCR(3)+1.

I
FLDSCR(5) holds the record size plus one of records in the file,

and must be appropriately initialized.

I FLDSCR(6) holds the physical record number of the first record on

the allocated list. It is zero if there are no allocated records.

The value is extracted from the file control record when the file

I is opened.

I FLDSCR(7) holds the physical record number of the first record on

j the deleted list. It is zero if there are no deleted records.

The value is extracted from the file control record when the file

J is opened.

FLDSCR(8) holds the physical record number of the last record on

1 the allocated list. It is zero if there are no allocated records.

The value is extracted from the file control record when the file

is opened.

FLDSCR(9) is the number of allocated records in the file. The

value is extracted from the file control record when the file is

opened.

FLDSCR(10) holds the physical record number of the file status

I'

l l 21

I record currently in the STATUS area-

FLDSCR(11) holds the index in MEMORY of the STATUS area for the

file. It should be initialized to zero.

3 PLDSCR(12) is currently unused, but is reserved for accessing

multiple working sets.

!
4.2 RNDSCRI

RNDSCR is a block of two words describing the record name

I symbol table, a combination of RNTABL and RNIMAG.

I
RNDSCR(1) holds the index in RNDSCR of RNIMAG, or zero if

IRNDSCR(2) is zero.

IRNDSCR(2) holds the number of record names in the table.

4-.3 RNTABL

IRNTABL and RNIMAG together constitute the record name symbol

table. RNTABL describes the name images in RNIMAG, and holds the

record type for each record name. A record type may be unnamed,

Ihave one or many names.

Il
...0 ~ e , -. l

j 22

I RUTABL(1,n) holds the (coded) record type. Record types are

(contiguous) positive integers used as indices into RTTABL.

RUTABL(2,n) holds the index in RNIMAG of the (first two characters

of the) nth record name.

INTABL(3,n) holds the length in characters of the nth record name.
!

4.4 RNIMAG!
RNI"AG is a packed string of record type names. Each name is

Ii begun on a word boundary.

4.5 RTTABL
.4

-. RTTABL, the record type table, links a record type with its

3 RDESCH.

J RTTABL(n) holds the index in FLDSCR of the RDESCR for record type

number n.I °

4.6 Record Definition(s)

'I
Record definitions are repeatable within a given file

, I

fA"
~. W' NW

123

Idefinition, just as file definitions are repeatable within MEMORY.

Multiple record definitions are concatenated at this point in the

file definition, and are located through RTTABL.

I
4.6. 1 RDESCR

I The record descriptor, RDESCR, is a block of five words which

are used as follows:

J RDESCR(1) holds the index in VDESCR of the first PDESCR.

I RDESCR(2) holds the index in RDESCR of SMDSCR.

I
RDESCR(3) holds the index in RDESCR of FORMAT.I
RDESCR(4) holds the index in RDESCR of DDESCR.

RBDESCR(5) holds the index in EDESCR of PGDSCR.

4.6.2 SMDSCR

SMDSCR is a block of two words describing the field name symbol

table, a combination of SMTABL and STMAGE.

3
SMDSCR(1) holds the index in SMDSCR of SIMAGE, or zero ifI

24

SMDSCR(2) is zero.

SMDSCR(2) holds the number of symbols in the table.

I 4.6.3 SMTABL

I SMTABL and SIM&GE together constitute the field name symbol

I table. SMTABL describes the name images in SIMAGE, and points to

the entry in DTABLE for each field named. Fields may have no

j name, one, or many names.

I SMTABL(1,n) holds the index (second subscript) of the entry for

jthe field in DTABLE.

SMTABL(2,n) holds the index in SIMAGE of the (first two characters

of the) nth field name.

SMTABL(3,n) holds the length in characters of the nth field name.

4.6.4 SIMAGE4

-SIMAGE is a packed string of field names. Each name is begun

on a word boundary.4
i-

25

1 4.6.5 DDESCR

DDESCR is one word describing DTABLE.

I
DDESCR(1) holds the number of fields described in DTABLE, i.e.,

I the length of DTABLE.

I
4.6.6 DTABLE

j There is one entry in DTABLE for each unique field in a record.

(A given field, social security number for example, might appear

on several pages of the same record.) It points to the DATA

j entry, and describes how the data is displayed, for each field.

J DTABLE(1,n) holds the index in DATA of the current contents of the

field.

DTABLE(2,n) holds the word length of the field contents in DATA.

JDTABLE(3,n) holds the index in FOPMAT of the display format of the

field.

DTABLE(4,n) holds the character (byte) length of the echo area for

the field. If the field length is longer than the echo length,

Jthe extra characters are written over the last position in the

echo field. This length must include room for the blank which is

I

26

7

I prefixed to all printed fields.

DTABLE(5,n) is currently unused, but is reserved for password

access to the field.

IDTABLE(6,n) contains a non-zero flag which is passed to an

application specific UCHECK (user check) routine, to verify the

correctness of a new value being giver~ to the field. A zero flag

indicates that no3 verification is required.

1 4.6.7 FOR~MAT

FORMAT is a packed string of format images for the data for

each field in DTABLE. Each object time format string is begun on

a word boundary. The display of blank fields is suppressed unless

a blank precedes the left parenthesis in the format string.

4.6..8 PGDSCR

PGDSCR is a block of two words describing the page name symbol

I table, a combination of PGTABL and PGIMIAG.

PGDSCR(I) holds the index in PGDSCR of PGI1MAG, or zero if

PGDSCR(2) is zero.

27

I PGDSCR(2) holds the number of symbols in the table.

4.6.9 PGTABL

PGTABL and PGIIAG together constitute the page name symbolI

table. PGTABL describes the name images in PGITiAG, and holds the

page number for each name. Pages may have no name, one, or many

I names.

*~ I PGTABL(1,n) holds the page number for the nth page name.

I PGTABL(2,n) holds the index in PGINMAG of the (first two characters

j of the) nth page name.

J PGTABL(3,n) holds the length in characters of the nth field name.

4.6.10 PGIf AG

J PGIMAG is a packed string of page names. Each name is begun on~

a word boundary.

14.6.11 Page Def init ion (s)

Page definitions are repeatable within a given record

28

I definition -just as record definitions are repeatable within file

definitions -multiple page definitions being concatenated ait this

point in the record definition. The first page definition is

located through RDESCR, and subsequent ones are found by

traversing the links in the PDESCB for each page.

I4.6.11.1 PDESCR

The page descriptor, PDESC?, is a block of six words which are

used as follows:

I PDESCR(1) holds the page number.

PDESCR(2) holds the index in RDESCl of the PDESCR for the next

j page. A value of zero indicates no next page.

I PDRSCB(3) holds the index in BDESCR of the PDFSCR for the previous

J page. A value of zero indicates no previous page.

PDESCB (4) holds the index in PDESCR of SDESCR.

I PDESCR(5) holds the index in PDESCR of TDESCR.

1 PDESCR(6) holds the index in PDESCR of FDESCR.

1 29

1 4.6.11.2 TDESCR

I
TDESCR is a single word describing TTABLE.I

TDESCR(1) holds the number of touch areas defined in TTABLE, i.e.,

I the length of TTABLE.

I
1 4.6. 11.3 TTABLE

jEach entry in TTABLE defines one touch area for the page.

There may be no, or any number of, touch areas defined.

TTABLE(1,n) holds the index (second subscript) in FTABLE of the

field referenced by a touchf in area n.I
TTABLE(2,n) holds the x screen coordinate of the upper left corner

i of touch area n.

TTABLE(3,n) holds the y screen coordinate of the upper left corner

Iof touch area n.

1 TTABLE(4,n) holds the x screen coordinate of the lower right

corner of touch area n.

TTABLE(5,n) holds the y screen coordinate of the lower right

corner of touch area n.

30

4.6. 11.4 PDESCR

FDESCR is a sinqle word describing FTABLE.

I
FDRSCB(1) holds the number of fields on the pdge, which is also

I the length of FTABLE. A page may contain no fields.

4.6.11.5 FTABLE

There is one entry in FTABLE for each field on the page. It

gives the position on the page, and a pointer to the description 2

of the lata, for each field. Note that a blank is prefixed to all

j printed fields.

FTABLE(I,n) holds the index (second subscript) in DTABLE for field

number n.I
j FTABLE(2,n) holds the x screen coordinate of the lower left corner

of the first print position in the field.I
FTABLE(3,n) holds the y screen coordinate of the lower left corner

Iof the first print position in the field.

1

I
I

. . . .&ii . . il.. Il

1 31

1 4.6. 11.6 SDESCR

SDESCR is a block of two words describing SSTABL and SSTRNG,

which together define the static elements of the page.

I SDESCR(1) holds the index in SDESCR of SSTRNG, or zero if

SDESCR(2) is zero.

SDESCR(2) holds the number of entries (commands) in SSTABL. This

table may be empty.I

~ 4.6.11.7 SSTABL

I
Each entry in SSTABL is a command to either 1) move the pointer

to a given position on the screen, or 2) draw a line from the

current pointer position to a given position, (leaving the pointer

at the end position), or 3) to write at a given position one of

the character strings in SSTRNG.

SSTABL(1,n) holds the x screen coordinate of the target point.

ISSTABL(2,n) holds the y screen coordinate of the target point.I
SSTABL(3,n) may have any of the following values: 1) zero, which

commands that the pointer be moved to the target point; 2) two,

which commands that a line be drawn from the current pointer1
I

32

I position to the target point; or 3) minus the index in SSTRNG of

i (the first two characters of) a string to be written on the

screen, with the target point being the position of the lower left

corner of the first character.

I
4.6.11.8 SSTRNG

SSTRNG is a packed string of static character strings for the

page. Each string is begun on a word boundary, and must be

I terminated by a zero byte.

I
I

I
I r

1 33

1 5.0 Data Record I/O Areas

I
Storage must be reserved at this point for the data record I/O

areas. A single data record 1/0 area must be provided for each

user. Since all indexing is relative to the data record I/O area

I referenced by CSTATE(4) for the current user, only the format of

one (the first) relocatable data record 1/0 area is described.

1 5.1 RECORD

RECORD is a block of five words containing information, used

and maintained by the system, about the record whose data is

1 currently in the DATA area immediately following RECORD. The last

three words of RECORD are the first three of the physical block of

1 data for the recor].

RECORD(I) holds a flag indicating whether or not changes have been

made to the record since it was last read into memory (or saved).
J

A value of one indicates change, zero indicates none.

RECORD(2) holds the sequential, physical record number of the

record in its physical, direct file. Zero indicates that no

record has been accessed from the current file.

1 RECORD(3) holds the physical record number of the next logical

record on the allocated list.I
I

34

I ECORD(4) holds the physical record number of the previous logical

record on the allocated list.

RECORD(5) holds the (coded) record type of the record. A positive

value is the index (second subscript) of the entry for this

I record's type in RTTABL. A value of zero indicates that the

record has been permanently, logically deleted from the file.

I
5.2 DATAI

DATA is a concatenated string of the data currently in the

record. Each data item is begun on a word boundary. All

1 templates for describing the data arrangements of the various

record data types for all of the files must be specified using

I this same addressing origin.

I=

* *1

357

1 6.0 Status Record I/O Areas

Storage may be reserved at this point for any number of status

record I/O areas, which are allocated for I/O using a least-

recently-used (LRU) algorithm. it is suggested that at least four

I status record I/O areas be provided for each file or each user

(whichever are fewer).

16.1 STATUS

STATUS is a status record I/O area. It contains a single, 4

three-word status element (STATEL) for each data record in the

logical file. STATUS is 256 words long, and contains 85 status
elements. The final word of STATUS is set to indicate that the

j status record has been modified and must be written.

6.2 STATEL

Each STATEL status element is used to maintain the status and

links of a single data record. All STATEL are initialized by the

I file creation/maintenance utility, and are of the following

format:

J STATEL(1) holds the status of the nth+1 physical record in the

data file, where n is the status element's sequential position inI
I

U36

the status file. A value of -1 implies that the data record is

either deleted or unused; any other value implies the record is

allocated. When STATEL(1) indicates the data record is allocated,

the data record's status in the working set indexed by CSTATE(10)

is determined by testing the bit zero-indexed from the least

I significant bit by CSTATE(10). If the bit's value is zero, the

data record is included in the corresponding working set; a value

of 1 means the record is excluded. (For example, if STATEL(1)=5,

J the corresponding data record is excluded from the first and third

working sets only.)I
STATEL(2) holds the physical record number of the data record next

on the same list (i.e., either allocated or deleted). If the data

Jrecord is unused, i.e. is on neither list, the value of this

location is meaningless.

STATEL(3) holds the physical record number of the data record

4 previous on the allocated list. If the record is not allocated,

Jthe value of this location is meaningless.

I
1
!

$1

137

1 7.0 BUFFER CONTROL

H BUFCTL and BUFTBL together make up the control structure for

the least-recently-used (LRU) management of the multiple buffers

in the STATUS area.I

7.1 BUFCTL

I
The three words in BUFCTL are defined and must be initialized

Ias follows:

BUFCTL(1) holds the index in BUFCTL of the control element for the

newest buffer in STATUS.

BUFCTL(2) holds the index in BUFCTL of the control element for the

oldest buffer in STATUS.

BUFCTL(3) holds the index in BUFCTL of the control element of the

most recently allocated dedicated buffer in STATUS. It must be

initialized to zero.

7.2 BUFTBL

I BUFTBL contains one control element for each of the multiple

buffers in the STATUS area. A BUFTBL element is defined and must

1

38

Ibe initialized as follows:

BUFTBL(1,n) holds the index in BUFCTL of the control element for

the next older buffer in STATUS.

I BUFTBL(2,n) holds the index in BUFCTL of the control element for

I the next newer buffer in STATUS.

j BUFTBL(3,n) holds the index in MEMORY of the buffer in STATUS

controlled by the element.I
BUFTBL(4,n) holds the number of words in a status file record to

be rewritten and must be initialized to zero.

BUFTBL(5,n) holds the disk unit on which the status file block

will reside and must be initialized to zero.

BUFTBL(6,n) holds the file block number of the status file block

and must be initialized to zero.

I
I

I

.1
• !b

39

IVI. COMMON BLOCKS
I
3 Most communication between procedures is accomplished through

argument lists, but in a few special cases common blocks are used.

I For a description of how to tailor these common blocks for a

specific application, please see the User's Guide. All common

blocks except ZTOUCH will be merged into other parts of ZMEMRY

with the expansion to multiple users.

1ZFLAGS
FIELD - if one, indicates that a field has been addressed and a

Ifield update needs to be done; is zero otherwise.

IRECCNT - the count of records in the working set (included

list).

j OLDTIM - the low order value of the system clock when the last

command was entered.

LOGTOG - if one, indicates that the user has executed a LOGON

command; -1 initially and after the execution of a LOGOFF

command.

Used by Procedures: ADD, BLOCK DATA, CMNDEX, CMNDXI, CMNDX2,

ENDTIM, FLDUPD, (main), HELLAS, REMOVE, SAMPLE, TPANEL,

WRAPUP

I
ZLOC

CMND - y coordinate of command echo position; (x coordinate

= 0); may have any value 16n, 0 <= a <= 31.I

40

DIAG - y coordinate of diagnostics echo position; (x coordi

nate = 0); may have any value 16n, 0 <= n <= 31.

X1,YI,X2,Y2 - coordinates of diagonally opposite corners of

the input echo window; each may have any value n,

0 <= n <= 511.

Used by Procedures: BLOCK DATA, ERROF, (main), MESSAG, SDISPL

MEMORY - see section 111. 1. 1.

Used by Procedures: FLDUPD, (main), SCAN, TPANEL, WRAPUP

ZTOUCH

This common block is used to pass touch coordinates from the

device handler to TPANEL, which handles the touch pseudo-commands.

X,Y - coordiantes of touch; each may have any value n,

0 <= n <= 31.

Used by Procedures: TPANEL

ZUNIT

UNIT - the disk unit on which record-data blocks reside.

PUNIT - the plasma panel.

IUNIT - the keyboard.

SUNIT - the disk unit on which the fil status blocks reside.

Used by Procedures: BLOCK DATA, DATAIO, ERPOR, FDISPL, INITL,

(main), MESSAG, RITE, SELERE, SELERi, SELER2, STATIO, WRAPUP

'f- , I

41

VII. PROCEDURE DESCFIPTIONS

I
I

ADD

This function adds a new record to the current file, inserting

it optionally before or after the current record in the allocated

I list, and accesses it so that data may be entered.

JCommon Blocks Used: ZFLAGS

Called by: CMNDX1

J Calls: DATAIO, GETPTR, GETREC, INSTAL, LOOKUP, STATUS

1
AKGET (assembly)

This subroutine is used to extract the operator performance

measurements from the device handler.

Called by: SAMPLE

Calls: -

AKSET (assembly)

This subroutine is used to specify a synchronous extension to

the plasma panel character generator for time delay purposes.

Called by: INITL

Calls: -

1

42

- ARITH

This function performs an arithmetic comparison of input

(character) data with stored data.

Called by: COMPAR

Calls: -I
BLOCK DATA

BLOCK DATA initializes the common blocks 7FLAGS, ZLOC, and

I ZUNIT.

Common Blocks Used: ZFLAGS, ZLOC, ZUNITI
BOOLN (assembly)

This function evaluates boolean expressions (from tables

j generated by BSCAN and RECTST).

Called by: SELECT

Calls: -

I B SCA N

IThis function performs syntax analysis of (complex) relational

expressions.

ICalled by: SELECT

Calls: SYMBOL, TOKEN]

I!

43

BINGET

This subroutine removes a buffer control element tron the

doubly-linked LRU queue.

Called by: STATIO

Thils: suruieisal h ot rcnl sdbfe oto

BUFPUT

element onto the doubly-linked LRIJ queue.

Called byi STATIO

J Calls:-

BUF URT

This subroutine physically writes a buffer if it is

appropriately flagged in its buffer control element.

1 Called by: STATIO

Calls:-

1 BULK (assembly)

This subroutine erases (or writes) solid, rectangular blocks on

I the plasma screen.

Called by: ERASE, INITL, LOGOFF, LOGON, SDISPL

I Calls:-

j CMNDEX

This subroutine drives execution of the command primitives.

Common Blocks Used: ZFLAGS

Called by: SCAN

Calls: CMINDX1, CMNDX2, ERROR

CMINDIN

This function scans an input string to determine what command

primitive (if any) the string contains.

Called by: SCAN

I Calls: TEXT

I CNThis subroutine drives the excution of all record-oriented

command primitives.

Common Blocks Used: ZFLAGS

Called by: CMNDEX

I Calls: ADD, DATAIO, ERROR, GETPAG, GETP.EC, LOGOFF, LOGON,

MESSAG, PDISPL, RELEAS, REMOVE, SELECT, VALUE

f CNDX2

This subroutine drives the execution of all page- and field-

I oriented command primitives.

Common Blocks Used: ZFLAGS

Called by: CMNDEX

1 Calls: ERROR, FLDNAM, GETFLD, GETPAG, PAGNAM, PDISPL, VALUE

45

COMPAR

This function evaluates the truth or falsity of relational

expressions passed to it.

S I Called by: RECTST

Calls: ARITH, MATCH

CONO0 P

This subroutine disables all keyboard input from the system

console.

Called by: INITL

J Calls: -

ICONoN

This subroutine re-enables the keyboard input from the system

console.

I ,Called by: WRAPUP

Calls: -

~CVT

This function converts an input character string to internal

integer format.

Called by: VALUE

l Calls: -

I

I
l

146

ICVTFLD
i This function converts and copies an entered string into its

assigned record data field.

Called by: FLDUPD

Calls: -

I
D IThis subroutine performs data record read/write operations.

Common Blocks Used: ZUNIT

Called by: ADD, CMNDX1, GETREC, LOGOFF, LOGON

Calls: -

I iDISPLA (assembly)

i This subroutine draws lines on the plasma screen or simply

moves the graphics cursor.

I Called by: SDISPL

Calls: -

ELINE (assembly)

This subroutine moves the write-position on the plasma screen

] to the beginning of a given horizontal line (on a multiple of

sixteen boundary).

Ii Called by: (main), EBROR, MESSAG

Calls:

I

I

47

ENDTIM

This subroutine updates the current user's user-performance

data area with the elapsed execution time (in 60Hz clock ticks) of

I the most recent directive.

Common Blocks Used: ZFLAGS

I Called by: (main)

Calls: TDIF, TIMGET

jERASE
This subroutine erases a line of text. on the display screen.

j Called by: (main) , ERROR, MESSAG

Calls: BULK

ERROR

This subroutine writes (or causes to be written) all error

messages.

Common Blocks Used: ZLOC, ZUNIT

Called by: CMNDEX, CMNDX1, CMNDX2, FLDUPD, SCAN

Calls: ELINE, ERASE, SELERR, UERROR

FDISPL

This subroutine writes one or all dynamic elements of a page.

1Common Blocks Used: ZUNIT

ICalled by: PDISPL

Calls: MOVCUR, BITE, TIME

1
I

i

48

F LDNAM[

This function accesses the field of the current page with a

given name.

j Called by: CMNDX2

Calls: GETFLD, SLOOKI
FLD UPD

This subroutine checks the validity of a new field value, and

drives the rest of the field update process.

Common Blocks Used: ZFLAGS, ZMEMPRY

j Called by: (main)

Calls: CVTFLD, ERROR, PDISPL, UCHECK

I GETBIT

This function returns the included/excluded/deleted status of a

record.

Called by: GETREC, INSTAL, RELEAS

Calls: IAND, ISHFTL, ISHFTR, STATUS

GETFLD

This function moves the cursor to the next field, previous

field, last field, or field number n, of the current page.

] Called by: CMNDX2, FLDNAM

J] Calls: MOVCUR

I
Im

]
! *0f f

49

I GETPAG

This function displays the next page, previous page, last page,

or page number n, of the current record.

Called by: CMNDX1, CMNDX2, PAGNAM

Calls: -i
GETPTR

This function returns the physical record number of the record

next or previous on the allocated list.

Called by: ADD, GETPEC, INSTAL

* Calls: STATUS

iGETREC

This ft.-ction accesses the first record, next record, previous

record, nth subsequent record, nth previous record, or the last

record in the current file.

called by: ADD, CMNDX1, REMOVE, SELECT

I Calls: DATAIO, GETBIT, GETPTR, MESSAGI
IAND (assembly)

j This function returns the bit by bit "and" of all its

arguments.

I Called by: GETBIT, PUTBIT

Calls: -

I

,I

50

INITL

*This subroutine establishes file definitions.

Common Blocks Used: ZUNIT

Called by: (main)

Calls: AKSET, BULK, CONOFF, UINITL, OTSWAI
INSTAL

This subroutine links a new record into the allocated list.

Called by: ADD

Calls: GETBIT, GETPTR, PUTPTI
IOR (assembly)

This function returns the bit by bit #'or" of all its arguments.

-Called by: PUTBIT

Calls: -

ISHFTL (assembly)

This function returns the specified left shift of a value.

Called by: GETBIT, PUTBIT
.4

Calls: -

ISHFTR (assembly)

I This function returns the specified right shift of a value.

Called by: GETBIT

Calls: -

I
1

_ 51

I LOGOFF

This subroutine erases the plasma screen, deactivates the touch

panel, updates the file control record, and saves the current

record if it has been chanqed. (It also prevents further use of

the system by the current user until a LO command is executed.)

I Called by: CMNDX1, WRAPUP

Calls: BULK, DATAIO, STATUS, TOUCH, ULOG

I LOGON

This subroutine initializes the included list, erases the

Iplasma screen, and activates the touch panel. (It also enables

use of the system by the current user.) The system is left in the

no-record-yet-accessed condition.

jCalled by: CMNDX1

Calls: BULK, DATAIO, MESSAG, OFFTP, RELEAS, TOUCH, ULOG

1i

LOOKUP

IThis function performs a standard symbol-table look-up.
jCalled by: ADD, PAGNAM, RECTST, SLOOK

Calls: MATCH

]
I!

1
1
I
1

52

(main)

This procedure first calls INITL to initialize the files; then

loops to pick-up entered strings and call CMNDEX or FLDUPD as

appropriate.

Common Blocks Used: ZFLAGS, ZLOC, ZMEMRY, ZUNIT

i Called by: (monitor)

Calls: ELINE, ENDTIM, ERASE, FLDUPD, INITL, OFFTP, ONTP,

PNWAIT, SAMPLE, SCAN, UPEMPT

MATCH

This function compares two character strings of equal length

for equality.

I Called by: COMPAR, LOOKUP, SYMBOL, TOKEN

I Calls: -

IMESSAG
This subroutine writes/eLases informative messages.

I Common Blocks Used: ZLOC, ZUNIT

jCalled by: CMNDX1, GETREC, LOGON, SELECT

Calls: ERASE, ELINE, UMSG1
MOVCUR (assembly)

IThis subroutine moves the I/O cnrsor to a specified screen

Ilocation.
Called by: FDISPL, GETFLD, TPANEL

JCalls:

I

53

INOT (assembly)

i This function returns the bit by bit complement of a value.

Called by: PUTBIT

j Calls: -

I OFFTP (assembly)

This subroutine inhibits touch panel in',':errupts.

Called by: LOGON, (main)

3 Calls: -

I ONTP (assembly)

This subroutine arms the touch panel for further interrupts.

I Called by: (main)

j Calls: -

j OTSWA (assembly)

This subroutine is used to control object time system work area

I allocations.

Called by: INITL

Calls: -

I
PAGNAM

I This function causes the display of the page (of the current

3 record) having a given name.

Called by: CMNDX2

Calls: GETPAG, LOOKUP

I

1 54

iPDISPL

This subroutine causes to be written on the plasma screen

either an entire page, or the dynamic part of eithe an entire

page or a single field.

Called by: CHUDX1, CNMDX2, FLDUPD

I Calls: FDISPL, SDISPL

I PEMILL (assembly)

j This subroutine disables any active output operations to the

plasma panel.

Called by: WRAPUP

Calls: -

IPUVAIT (assembly)

This subroutine vaits for all queues on the plasma panel to

1 quiesce.

Called by: (main), TIME, TPANEL, WRAPUP

Calls: -

PUTBIT

I This subroutine updates the included/excluded/deleted status of

a record.

ICalled by: BELEAS, REBOVE

Calls: IAND, IOR, ISHFTL, NOT, STATUS

1

, 1

55 1
PUTPTR

This subroutine updates the pointer to the record next or

previous on the allocated list.

Called by: INSTAL, REMOVE

Calls: STATUS

PWITE (assembly)

This subroutine writes a given character string at a given

location on the plasma screen.
Called by: SDISPL

Calls: -

I RECTST

This subroutine examines the current record to evaluate the

truth or falsity of relational expressions passed to this

Jsubroutine in tabular form.

Called by: SELECT*' 1
I Calls: COMPAR, LOOKUP, UTEST1

RELEAS

This function puts all allocated records (in the current file)

in all working sets.

ICommon Blocks Used: ZFLAGS

Called by: CMNDX1, LOGON

Calls: GETBIT, PUTBIT

I
II

56

IREMOVE
This function removes the current record from the current

working set, and depending on the value of an input flag, may

5 delete the record from the file as well. The system is left in

the no-record-accessed condition.

Common Blocks Used: ZFLAGS

Called by: CMNDX1, SELECT

Calls: GETREC, PUTBIT, PUTPTRI
BITE

This subroutine is called only by FDISPL, and exists solely so

that the write of each field on the plasma screen may be done

without subscripting a format variable, (which is syntactically

i illegal).

Common Blocks Used: ZUNIT

Called by: FDISPL

Calls: -

SAMPLE

This subroutine is used to sample the user performance

J measurements collected by the device handler.

Common Blocks Used: ZFLAGS

I Called by: (main)

Calls: AKGET, TDIF

I

I
I

57

SCAN

jThis subroutine drives the interpretation and execution of

commands (except for those pseudo-commands handled by FLDUPD and

I TPANEL).

Common Blocks Used: ZMEMRY

I Called by: (main)

Calls: CANDEX, CMNDIN, ERROR, USCAN

I SCREEN (assembly)

This function converts a touch panel coordinate into a

I corresponding screen coordinate.

Called by: TLOOK

Calls: -

I
SDI S PL

This subroutine drives the display of the static elements of a

page on the plasma screen.

Common Bloccks Used: ZLOC

Called by: PDISPL

Calls: BULK, DISPLA, PWRITE, TIMEI
I
I
I
I
!

58

ISELECT
This function drives execution of the select command, which

selects a subset of the current working set to be the new working

set, based on (complex) relational expressions entered by the

user. The system is left in the no-record-yet-access-d condition.

I Called by: CMNDX1

Calls: BOOLN, BSCAN, GETREC, MESSAG, RECTST, REMOVE

I SELERR

This subroutine initiates the writing of error messages for

errors detected during syntax analysis of the select command.

Common Blocks Used: ZUNIT

Called by: ERROR

ICalls: SELERi, SELER2

1 SELER I

This subroutine writes part of the set of error messages for

Ierrors detected during syntax analysis of the select command.
Common Blocks Used: ZUNIT

Called by: SELERR

I Calls:-

I

I
I

59
I s

SELER2

I This subroutine writes part of the set of error messages for

errors detected during syntax analysis of the select command.

Common Blocks Used: ZUNIT

Called by: SELEHR

I Calls: -

I SLOOK

I This function translates an input field name into a pointer to

the descriptor of the field referenced.

Called by: FLDNAM

Calls: LOOKUP

JSTATIO
This subroutine performs LR[! buffered I/0 of file status

I records.o

Common Blocks Used: ZUNIT

I Called by: STATUS

j Calls: BUFfET, BUFPUT, BUFWRT

j STAT US

This subroutine swaps the status records to allow processing of

1 the status information for any given data record.

Called by: ADD, GETBIT, GETPPTR, LOGOFF, PUTBIT, P!JI'PTR

Calls: STATIO

nI

60

ii SM OL

This function assigns relational expressions to the table which

is used during the evaluation phase of the select command.

3. Called by: BSCAN

Calls: MATCH

TDIF (assembly)

This function computes the unsigned difference (modulo 65536)

between two low order system clock 60 hertz tick counts.

Called by: ENDT.IM, SAMPLE

Calls:-

ITEXT
3 This function extracts the next symbol from a command line, and

returns the first two characters of that symbol.

3Called by: CMNDIN

Calls: -

JTIME
This subroutine synchronizes use of the user's UTIME subroutine

to prevent non-reentrancy problems.

Called by: FDISPL, SDISPL

Calls: PNWAIT, VITIME

AlA

I 61

I TINGET (assembly)

This function returns the current lov order vord of the line

frequency clock.

Called by: ENDTIN

Calls: -

I
LThis function translates touch coordinates into a pointer to

the descriptor of the field touched.

Called by: TPANEL

Calls: SCREEN

I TOKEN

This function extracts and classifies the next token in the

relational string part of a select command line.

jCalled by: BSC&N

Calls: MATCH1
TOUCH (assembly)

This subroutine activates/deactivates the touch panel.

Called by: LOGOFF, LOGON, WRAPUP

Calls: -]
I
I

I

i

i 62

1 TPkEL

This subroutine is the touch panel interrupt completion

routine.

Common Blocks Used: ZFLAGS, ZMENMY, ZTOUCH

Called by: (momitor)

I Calls: fOYCUE, PlIWAIT, TLOOK, UTIME, UTOUCH

I VALUE

S This function extracts the next symbol from a command line, and

tries to convert it to an integer format.

Called by: CKNDX1, CMNDX2

Calls: CVT

jWRAPUP
This subroutine is invoked during program termination to allow

jdevice deactivation.
Common Blocks Used: ZFLAGS, ZMERRY, ZUNIT

Called by: (main)

Calls: CONON, LOGOFF, PIKILL, PUWAIT, TOUCH, UMIAP

I
I

63

j VIII. FILE CREATION/MAINTENANCE UTILITY

!
The file creation/maintenance utility for the Generic Data

Transaction System consists of two parts. The first, FILUPD,

I compacts the user's disk and then starts the second part. The

second part, NPEDCU, is a separate program that lets the user

perform any of four activities. Each of these activities operates

on one logical file at a time. Each logical file consists of a

physical data file and a physical status file as described in Part

IV of this document.

The four activities available are: 1) to create a logical

file; 2) to increase the capacity of a logical file; 3) to check a

logical file for internal consistency; and 4) to reorder the data

records (in a logical file) so that their loqical and physical

orders are the same. If the user chooses to reorder a file

(activity four), a check for consistency (activity three) is

automatically done first.

The check for consistency is provided because an abnormal

termination of execution of the generic system could leave changes

to the logical file only partially recorded in the permanent disk

files. In the event of such an abnormal termination, a

Iconsistency check can be performed to determine whether or not the
1logical file(s) in use at the time need to be restored from back-

up copies. A consistency check is automatically done before a

I file is reordered because internal consistency is necessary for

the reordering operation to function correctly.l

I

64

I The 1/0 operations performed by the generic system are executed

most efficiently when the logical and physical orders of the data

records are identical. If many data records have been added to

and deleted from a given file since it was created, the records'

logical order may differ significantly from their physical order.

I In such a case, a reordering of the data records (activity four)

could significantly improve the performance of the generic system.

It is for this reason that the reordering option was included.

I
I
I
[
I
I

I
I
I

I
I

65

I IX. APPLICATION SPECIFIC PROCEDURES

I
Application specific procedures may exist as user supplied

software appendages at strategic points in the generic data

I transaction system. It is anticipated that the procedures will be

used to customize the operation of the generic system in such a

way as to either modify or extend the capabilities required by the

user's specific application. The procedures must exist as FORTRAN

IV callable subroutines and/or functions in order to be compatible

j with the generic system. Also, care must be taken in the design

of the procedures so that 1) the return path through the overlay

structure is preserved, 2) procedures called by completion

routines adhere to the restrictions for that type of subprogram,

3) procedures called as synchronous extensions to interrupt

j I handlers do not cause the issuance of EMTs (emulator traps

intructions) in addition to the above restrictions for completion/ I
routines, and 4) as an added restriction for completion routines

or synchronous extension routines there may not be any overlay

operations invoked, ie., all subprograms called must exist in the

permanently resident program segment.

IUCHECK
This function is called by FLDUPD when DTABLE(6,n) contains a

non-zero value for the field being updated. The call is made

immediately prior to the call to CVTFLD, which is normally used to

convert and assign a value to the field being updated. A returnedI

66

I value of zero indicates processing is complete except for the

reporting of any detected errors (i.e. the field has been updated,

refreshed on the screen, and FIELD has been reset if no field is

3 to be addressed on the next pass through the control cycle) and a

returned value of one indicates that CVTFLD will be called after

3reporting any detected errors.

I UERROR

IThis subroutine is called by ERROR immediately after defining

the diagnostic output line but before interpretation of the error

code. Further interpretation of the error code into the normal

set of messages is inhibited by setting the error code to zero.

The error count in the user-performance data area will not be

incremented except when recognizable error codes are interpreted

into the normal set of messages.

UINITL

- This subroutine is called by INITL after the initial screen

erase, the assignment of the standard logical units and completion

routines, and initialization of the user-performance data area.

ULOG

I This subroutine is called by LOGON or LOGOFF (as indicated by a

I flag) immediately before resetting the user-performance data area.

In both cases the screen has been erased, the system is in the no-

Irecord-yet-accessed condition, and the control record is current.

When the calliag subroutine is LOGOV, the touch panel is active.I

*14

67

The touch panel has already been deactivated when the calling

subroutine is LOGOFF.

I UMSG

This subroutine is called by MESSAG immediately after defining

I the diagnostic output line but before interpretation of the

message code. Further interpretaion of the message code into the

normal text is inhibited by setting the message code to zero. A

message code of minus one will immediately erase the diagnostic

output line.!
UPR N PT

1This subroutine is called by (main) at the beginning of each

control cycle after the echo line is defined but before the

command read is initiated. The user-performance data area has

been updated to reflect the most current command before the call

is made.

USCAN

This function is called by SCAN immediately prior to the normal

interpretation of the current command line by CMNDIN. A returned

value of zero indicates that processing is complete except for the

Ireporting of any detected errors, and a returned value of one

indicates that CNNDIN should be called after reporting any

detected errors. Only commands which are processed by CMNDIN will

result in the updating of the user-performance data area.

I

68

UTE ST

IThis function is called by PECTST in the evaluation of a

Boolean "Select" request prior to the normal evaluation of an

I element of the relational expression table by COMPAR. A binary

zero (false) or one (true) may be returned, or a minus one may be

Iused to flag that normal evaluation by COMPAR is requested.

This subroutine is called by subroutine TIME for both of the

subroutines FDISPL and SDISPL, by FORTRAN IV completion routine

TPANEL, or as a synchronous extension to the plasma panel

interrupt server preceding each character generation. All calls

are made immediately prior to an operation which will result in

f alphanumeric text being written to the plasma panel. If module

NPRDCC is compiled with the /D switch, (i.e. UTIME is used as a

jJ synchronous extension to the plasma panel interrupt hardware),

care must be taken that UTIME does not cause an EMT to be issue4.I
Otherwise, the usual restrictions normally applying to completion

routines must be observed unless the touch panel is disabled by

ULOG. A flag passed to UTIME is used to indicate from where it

was called.

UTOUCH

This subroutine is called from FORTRAN IV completion routine

TPANEL before any other processing occurs in response to a touch

panel interrupt. The restrictions applying to completion routines

must be observed.

L I

1 69

S.OW.AP

This subroutine is called from UBAPUP during program

termination after interrupts to the plasma panel and touch panel

have been disabled.

j I

I!!I
I

* 1

'I

70

I?
APPENDIX A

I STATE TABLES

I
This appendix contains a tabular description of the finite

I state automaton used in the parsing of arbitrarily complex boolean

search specifications by FORTAN IV subprogram BSCAN and the

operator precedence push-down automaton used in the evaluation of

the parsed expressions by assembly subprogram BOOLN.

The entries in both tables are constructed similarly, having

the form:

A

S

R

where "A" represents the action or action(s) to be taken; "S" is

the next state (if different than the current state); and "R" is a

control variable value (for BSCAN) or statement label (for BOOLN)

indicating which section of each subprogram is actually executed.

.1

I *71

I TABLE 1: State Table for BSCAN

p cS Pr e u rT O o

r v rT

S e r e

I u t T CUFRENT TOKEN

N Ty
U T op 7 10
m 0 k1 2 3 4 5 6 8911
b k e 912
I e n string >=><# <

I I II i I I

1 initial -32 2 -8 I 4 I -6 3 -7

2 -11 2 1 -9 4 I -10 I5 -12
31-,,I - I

9 T 1 7 1 10 1 5
3 string I I 8I I I 4 I -13

C 179 7 1 I 1 1 I

R I -14 1 9 I - I
i c 1 9 Ii 5 II 8 1 i

RI

R 4 -17 1 2 1 -15 I 4 I -16 I 3 1 -13
E I 1 1 1 3 1 1 2 1 1

T I 1 17 I I7 D I I V
5 (string l-20 I -4 I 8 1-14 9 -3 6

8 I I 5 1 I 3 I I 11 I

S I I I IC I

T 6 >=_<*S I -23 I -5 I-22 -24 -21 7 -2
A2 i - I - 12 I

E I I I I I D I I I
7 value I-33 -19 -25 -34 9 1 -26 -27

II I l I I I 7 I 1 1

8 &I 1 -31 1 2 1 -29 I 4 1 -30 I 3 1 -28 I

I I 1 I I I 2 I I

9)-35 j 8 1-38 I 9 I-37 I-36 I
I 10 I I 6 I I 7 I I I-- ---------------------

72

Actions: I => increment parenthesis counter

D => decrement parenthesis counter

T => if parenthesis counter not balanced, error <- -1

V => relational operator code <- current token value - 6

7 => relational 3perator code <- 7

I C => close relational expression

U States: # => ISTAT <- #

R
Beferences: * => DEST <- #I

I

II

73

I TABLE 2: State Table for BOOLN

P c
r u T

S e r o
t v r k
a i e eIt 0 nl n

e 11 CUR~RENT TOKEN
s T

N T y

m 0 k e -1 -2 -3 -4 -5 0 >0

be Toen n t ~ operand

r

j initialt Al Al El
0 or 1 - l

--- --------------
C A IA I D IB
U 1 operand I - I 2 1 4 1 - 1 II -

B 3 3 41 15 6l
-- -

E I Al IA I I I El
N 2 & 1 01 1 -- 31
T I 21 81

I IA I CI D I B I
3 &operandl 21 4 I 1 j -

S 3 13101 156

A A I I A I E I E
T 4 1 101- 1-15
E Ii 21 91

* I I A I C I D B II
5 ioperandl 1 21 4 I - I 1 I -

3 13101 15161
- - - - - - - - - - -- -

74

IActions: A => push operator

B => evaluate stack to top; return result;

error if parentheses unbalanced

C => evaluate stack to top or (; push result

D => evaluate stack to (; push result;

I error if parentheses unbalanced

E => evaluate unary operators; push result

I States: *

3References: 1 => RECURS

2 => PUSH

13 => UH

14 => PUSH4

5 => EVALP

16 => EVALS

7 => PEVAL1

18 => PV
9 => PEVAL5

10 => EPUSH4

I

I

II I
I I
I
I

I

I - finis - t
I

i
I I
.1

I

I
I

